Toan Ong, Michael Mannino, & Dawn Gregg
Electronic Commerce Research and Applications, Vol. 13, Issue 2, March-April 2014, pp. 69-78
This exploratory study investigates the linguistic characteristics of shill reviews and develops a tool for extracting product features from the text of product reviews. Shill reviews are increasingly used to manipulate the reputation of products sold on websites. To overcome limitations of identifying shill reviews, we collected shill reviews as primary data from students posing as shills. Using semi-automated natural language processing techniques, we compared shill reviews and normal reviews on informativeness, subjectivity and readability. The results showed evidence of substantial differences between shill reviews and normal reviews in both subjectivity and readability. Informativeness appears to be a mixed separator of shill and normal reviews so additional studies may be necessary. Overall, the study provides improved understanding of shill reviews and demonstrates a method to extract and classify features from product reviews with an eventual goal to increase effectiveness of review filtering methods.