Miao Yuan, Cheng Yong Tang, Yili Hong, Jian Yang
Annals of Applied Statistics,Vol. 12, Issue 4, Pages: 2587-2617.
Measuring the corporate default risk is broadly important in economics and finance. Quantitative methods have been developed to predictively assess future corporate default probabilities. However, as a more difficult yet crucial problem, evaluating the uncertainties associated with the default predictions remains little explored. In this paper, we attempt to fill this blank by developing a procedure for quantifying the level of associated uncertainties upon carefully disentangling multiple contributing sources. Our framework effectively incorporates broad information from historical default data, corporates’ financial records, and macroeconomic conditions by (a) characterizing the default mechanism, and (b) capturing the future dynamics of various features contributing to the default mechanism. Our procedure overcomes the major challenges in this large scale statistical inference problem and makes it practically feasible by